Acta Cryst. (1957). 10, 574

The Crystal Structure of P₄S₃

BY YUEN CHU LEUNG AND JÜRG WASER

Chemistry Department, The Rice Institute, Houston, Texas, U.S.A.

AND S. VAN HOUTEN, AAFJE VOS, G. A. WIEGERS' AND E. H. WIEBENGA

Laboratorium voor Anorganische en Fysische Chemie, Rijksuniversiteit, Groningen, The Netherlands

(Received 3 October 1956 and in revised form 14 January 1957)

The crystal structure of P_4S_3 has been determined by X-ray diffraction. Space group *Pmnb*, 8 molecules per unit cell. Two independent structure determinations are described; one by the application of inequalities and two-dimensional least-squares refinement and another by means of a three-dimensional Patterson synthesis and refinement by successive two-dimensional Fourier syntheses. The final coordinates were obtained by three-dimensional least-squares refinement. The crystal consists of P_4S_3 molecules having the same structure as that derived by Hassel & Pettersen in an electron-diffraction study of gaseous P_4S_3 . The average P-S and P-P distances are 2.090 and 2.235 Å respectively.

1. Introduction

Of the various sulfides of phosphorus described in the literature (Stock, 1910*a*, *b*, *c*), the existence of P_4S_{10} , P_4S_7 , P_4S_5 and P_4S_3 is well established. The crystal structures of P_4S_{10} and P_4S_7 are described by Vos & Wiebenga (1955), and that of P_4S_5 has been determined recently (Van Houten & Wiebenga, 1957).

 P_4S_3 was discovered in 1864 by Lemoine and was more fully examined by Stock and later by Treadwell & Beeli (1935). Hassel & Pettersen (1941) found, by electron diffraction of the vapor, a molecular structure with an average bond length of 2.15 Å, which is shown in Fig. 1(b). It will be referred to as Hassel's model.

Fig. 1. Proposed structures for P_4S_3 .

From theoretical considerations Pernert & Brown (1949) proposed, however, two other structures for the P_4S_3 molecule, which are represented by Figs. 1(*a*) and 1(*c*).

The structure of one of the crystalline modifications of P_4S_3 was determined independently in two laboratories (Leung, Waser & Roberts, 1955; van Houten, Vos & Wiegers, 1955). It was shown that this modification consists of molecules of P_4S_3 , the molecules having the structure observed by Hassel & Pettersen (1941). In the present paper the results of the two preliminary structure determinations are compared, and a three-dimensional least-squares refinement is described which was carried out by Waser and Leung using van Houten's intensity data.

2. Experimental

(a) Material

The compound was prepared following the procedure of Stock (1910*a*), and was crystallized first from carbon disulfide and then from benzene. By differential thermal analysis, dilatometry and by observation under the polarizing microscope, the crystals were found to have a transition point at $39^{\circ}\pm1^{\circ}$ C. The heat of transition amounts to *ca*. 3.4 kcal./mol. Only the low-temperature modification was further investigated.

Crystals of this modification were obtained by cooling a solution of P_4S_3 in a mixture of carbon disulfide and benzene from room temperature to 0° C. Crystals were also grown by slow evaporation of a solution in acetone. Most crystals were laths along the *a* axis showing the orthorhombic habit, faces parallel to (100), (010) and (001) being predominant.

For the X-ray work crystals were used having a diameter of approximately 0.1 mm. perpendicular to the crystal axis about which the photographs were made. To avoid oxidation by air, the crystals were sealed in pyrex capillaries.

(b) Unit cell and space group

Weissenberg and oscillation photographs about the a and b axes showed the crystals to be orthorhombic. The systematic absences observed were h0l with h+l odd and hk0 with k odd which indicated as probable space groups $D_{2k}^{16}-Pmnb$ and $C_{2v}^{9}-P2_{1}nb$. The statistical method of Howells, Phillips & Rogers (1950) indicated the presence of a center of symmetry, which is compatible with the absence of a pyro- and a piezoelectric effect^{*}. The space group Pmnb was therefore tentatively adopted; it was confirmed by the result of the structure determination.

Accurate lattice constants were obtained by means of a special back-reflection camera, using copper radiation. With $\lambda(\operatorname{Cu} K\alpha_2) = 1.54433$ Å and $\lambda(\operatorname{Cu} K\alpha_1)$ = 1.54051 Å the following values were found:

$$a = 9.660, b = 10.597, c = 13.671 \text{ Å}$$
.

The accuracy of these values may be represented by a standard deviation of 0.005 Å.

With eight molecules per unit cell the density was calculated to be 2.08 g.cm.^{-3} ; the experimental value is 2.03 g.cm.^{-3} (Stock, 1910*a*).

(c) Structure factors

The intensities of most reflections were measured on integrated equi-inclination Weissenberg photographs (Wiebenga & Smits, 1950) about the a axis, using Nifiltered copper radiation. The weak intensities were visually estimated on ordinary Weissenberg photographs of long exposure time. Use was made of the multiple-film technique.

In this way the intensity data for 954 independent hkl reflections were obtained. Lorentz and polarization factors were taken into account and an approximate correction for absorption was applied, assuming the crystal to be a cylindrical rod. The data obtained from different layer lines were related by photographs about the *c* axis. In the course of the structure determination the scaling factors thus obtained were slightly adjusted by comparing calculated and observed structure factors.

3. Determination of the approximate structure

The approximate structure was found by Leung & Waser by application of inequalities and two-dimensional least-squares refinement and independently by van Houten, Vos & Wiegers from a three-dimensional-Patterson synthesis and refinement by means of successive two-dimensional Fourier syntheses. For these two structure determinations two independently measured sets of zonal intensity data were used.

(a) Application of inequalities and two-dimensional least-squares refinement of the coordinates

The first attempt at solving the structure centered around the zone (0kl) since it corresponds to a projection of the electron density which has symmetry centers in either space group. The signs of a number of structure factors were found by the inequalities $(U_{H}\pm U_{H'}) \leq (1\pm U_{H+H'})(1\pm U_{H-H'})$ introduced by Harker & Kasper (1948), and derived in an especially compact way by MacGillavry (1950). These inequalities were applied systematically by using a scheme described by Grison (1951), and were supplemented by more complex inequalities derived by utilizing all symmetry elements of the (100) projection.

To obtain experimental values for the unitary structure factors U_H , the observed structure factors were first put on an approximately absolute scale (Wilson, 1942; Harker, 1948). No corrections for the temperature effect were attempted at this stage. Since the resulting U values were too small, so that very few sign relations were obtained, they were artificially boosted by multiplication by $a \exp(b \sin^2 \theta / \lambda^2)$. The constants a and b were chosen by trial and error so as to lead to as many non-contradictory sign relations as possible. In this way 35 out of the 86 observed structure factors could be provided with signs. A (100) Fourier synthesis using these 35 signs was calculated; in this projection the asymmetric unit showed only nine major peaks to which 14 atoms had to be fitted. Calculations of structure factors with various peaks accounted for by superimposing two or three atoms, however, failed to give reasonable agreement with the experimental values.

The many superpositions suggested the existence of mirror planes parallel to (100), corresponding to spacegroup Pmnb. This was supported by the evidence from the statistical test described previously and the space group was at this point assumed to be Pmnb.

Inequalities were then derived with U_{h0l} values which had been boosted in a way similar to the U_{0kl} , and for these reflections 26 of 35 signs could be determined. On a Fourier synthesis based on these 26 reflections Hassel's model (Fig. 2) could easily be

Fig. 2. Molecule of P_4S_3 .

fitted. The resulting coordinates were improved somewhat by a second (010) Fourier synthesis. Once these coordinates were available it became clear how the two crystallographically different molecules could be fitted to the preliminary (100) projection.

The approximate parameters were refined by six least-squares cycles involving the zonal data by the procedure used in the three-dimensional refinement described later. During this refinement the same tem-

^{*} The absence of the piezo-electric effect was kindly demonstrated for us by Dr W. G. Perdok, Crystallographic Institute, Groningen, The Netherlands.

perature factor was used for all atoms and only the diagonal terms in the coefficient matrix of the normal equations were calculated. Although this procedure is justifiable when three-dimensional data are employed and the axes are all at right angles, it is less acceptable when only zonal reflections are used. Indeed, it was found that in these two-dimensional refinements the convergence could be improved by permitting the corrections to the atomic parameters to be only onehalf of the actually computed amounts.

With a temperature factor $\exp(-2.89 \sin^2 \theta/\lambda^2)$ a disagreement index R = 0.16 was obtained. The final parameters are listed in Table 1, with their standard deviations, the r.m.s. value of which is 0.028 Å. These deviations should, however, be viewed with caution because they were computed without taking into account the non-diagonal terms in the coefficient matrix of the normal equations.

(b) Three-dimensional Patterson synthesis and successive Fourier syntheses of the three projections

The Patterson synthesis showed a large number of peaks near the plane (0, y, z), which indicated that many atoms had approximately the same x coordinate. Many of the peaks in the section $(\frac{1}{2}, y, z)$, which is a Harker section for the two possible space groups Pmnb and $P2_1nb$, are therefore non-Harker maxima, and an examination of this section did not look very promising. An attempt was made to obtain information from the Harker lines $(\frac{1}{2}, y, \frac{1}{2})$ and $(0, \frac{1}{2}, z)$. As on these lines the Harker maxima overlapped to a great extent, it was not possible to determine their positions directly. Use could be made, however, of the fact that vectors between bonded atoms, as represented by peaks around the origin, have to be found also between Harker maxima and general peaks in the Patterson synthesis. In this way some of the maxima on the Harker lines could be located. This procedure gave the y and z coordinates and the relative x coordinates of four atoms. It was now tentatively assumed that these four atoms were repeated in the structure, because the Patterson synthesis showed a remarkably high peak around x = 0.15, y = 0.00, z = 0.50, which was surrounded by other peaks in a similar way as the peak at the origin. Therefore coordinates x = 0.15, y = 0.00, z = 0.50 relative to the known set of four atoms were assigned to a second set of four atoms. The positions of the eight atoms found so far were proved to be approximately correct by comparing the vector diagram of these eight atoms and the atoms symmetrically related to them with the Patterson synthesis. From the positions of some of the remaining peaks relative to the maxima already used, it was now noticed that a further atom connected two of the four atoms of the second set. These five atoms (E, F, G, H)and K in Fig. 3), appeared—within the limits of error -to be a part of Hassel's model (Fig. 2), with one of its symmetry planes parallel to the plane (0, y, z).

Fig. 3. The first nine atoms deduced from the Patterson map, schematically shown in [010] projection. This figure may be compared with Fig. 5(b) giving the [010] projection of the final structure.

Another Hassel molecule could be fitted to the first set of four atoms (A, B, C, and D in Fig. 3) such that one of its symmetry planes coincided with the symmetry plane of the first molecule parallel to (0, y, z). It was then concluded that the space group was *Pmnb*.

The coordinates were refined by successive Fourier syntheses of the three projections. 'Back-shift' corrections for the termination of the series (Booth, 1946)

Fig. 4. Electron-density projections along (a) [100], (b) [010] and (c) [001]. Contour lines are at intervals of 4 e.Å⁻²; the broken line is at 4 e.Å⁻². Crosses indicate final atomic coordinates.

were applied in the later stages of this refinement. After the final structure-factor calculation, the signs of 11 out of the 244 observed zonal structure factors remained uncertain. Using for P and S the scattering factors from the Internationale Tabellen zur Bestimmung von Kristallstrukturen, and a temperature factor $\exp(-3.5 \sin^2 \theta/\lambda^2)$, a value of 0.13 was obtained for the disagreement index R for the observed 0kl, h0land hk0 reflections. The final electron-density maps are shown in Fig. 4. The atomic coordinates deduced from these maps are given in Table 1; some of these

Table	1.	Coordinates	for	the	atoms	of	the	asymmetric

			unu^{*}				
		Two-			Thr	ee-	
		dimen-	Least s	quares	dimensional		
	Coor-	sional	on three	zones	least sq	uares	
Atom	dinate	Fouriers		σ	-	σ	
\mathbf{S}_{1}	x	0.584	0.586	0.0034	0.5853	0.00076	
-	y	0.147	0.149	22	0.1474	58	
	z	0.970	0.971	19	0.9711	48	
S_3	y	-0.073	-0.068	22	-0.0699	58	
•	z	0.857	0.857	16	0.8580	48	
\mathbf{P}_{1}	\boldsymbol{x}	0.636	0.636	35	0.6341	80	
-	y	0.232	0.232	23	0.2324	62	
	z	0.837	0.840	22	0.8376	51	
P_3	y	0.078	0.076	22	0.0801	63	
•	z	0.756	0.759	20	0.7580	51	
\mathbf{P}_4	y	0.024	0.019	22	0.0219	62	
	z	0.992	0.992	19	0.9934	50	
S'_1	\boldsymbol{x}	0.084	0.081	34	0.0851	75	
	y	0.560	0.558	21	0.5613	58	
	z	0.872	0.874	19	0.8728	48	
S'_3	y	0.337	0.334	22	0.3347	59	
	z	0.977	0.971	16	0.9709	47	
$\mathbf{P_{i}'}$	\boldsymbol{x}	0.136	0.140	31	0.1345	81	
	y	0.448	0.446	23	0.4456	63	
	z	0.753	0.755	23	0.7536	50	
$\mathbf{P'_3}$	y	0.285	0.288	23	0.2873	62	
	z	0.825	0.822	17	0.8223	50	
$\mathbf{P'_4}$	y	0.534	0.533	22	0.5301	64	
	z	0.968	0.966	17	0.9683	49	

* For numbering of atoms see Fig. 2. Corresponding atoms in the two independent molecules are distinguished by the use of a prime. Atoms S_3 , P_3 and P_4 lie on the mirror plane at $x = \frac{2}{4}$, atoms S'_3 , P'_3 and P'_4 on the mirror plane at $x = \frac{1}{4}$.

values are averages of independent values obtained from different projections.

The accuracy of the final atomic coordinates was estimated by comparing the values obtained for 11 coordinates from different projections. The estimated standard deviation is 0.015 Å for all directions. Since, however, during the refinement each cycle was started with the mean values of the atomic parameters, obtained from two projections in the preceding cycle, the coordinates derived from the three projections are not entirely independent. For this reason the value 0.015 Å for the standard deviation must be considered as a lower limit. The standard deviation calculated with Cruickshank's formula (1949) was 0.02 Å. This latter value was taken for the standard deviation in the atomic coordinates.

4. Three-dimensional least-squares refinement

As starting parameters for the least-squares refinement, using all available hkl-reflections, the averages between the final parameters of the two independent two-dimensional refinements were taken. For the calculations a digital computer (the Datatron, built by the Electrodata Corporation of Pasadena, California) was employed. The computer not only furnished the coefficients of the normal equations involving corrections to the atomic coordinates as well as to the temperature parameters, but also solved these equations. The computer program used was that developed by Lavine & Rollett (1956). In this program the observational equations are weighted automatically in a manner similar to the one suggested by Hughes (1941):

$$\begin{array}{ll} \mbox{When } F_o > 4F_{\min}, & w = 1/F_o^2. \\ \mbox{When } F_{\min} < F_o < 4F_{\min}, & w = 1/(4F_{\min})^2. \\ \mbox{When } F_o = 0; \; F_c > F_{\min}, & w = 1/(4F_{\min})^2 \; \mbox{and} \\ & F_o \; \mbox{is replaced by } F_{\min}. \\ \mbox{When } F_o = 0; \; F_c < F_{\min}, & w = 0 \; . \end{array}$$

Here F_{o} and F_{c} are the observed and computed structure factors for a given reflection, w is the weight of the corresponding observational equation, and F_{\min} . is the magnitude of the smallest observed structure factor. Though the minimum observed intensity actually varies with θ , a constant value F_{\min} was used. The computer program provided for individual temperature factors for all atoms. The same temperature factor was, however, used for all atoms in the refinements discussed here, but in every cycle individual atomic shifts in the temperature parameter were computed. Since most of the experimental data used had been obtained from equi-inclination Weissenberg photographs about the a axis, reflections with different values of h were given different scale factors; these scale factors were readjusted after each cycle.

Altogether five refinement cycles were completed. The constant F_{\min} , was chosen to be 4.0. The value of R decreased from 0.222 for the initial parameters to 0.159 for the parameters resulting from the fourth cycle, while $\Sigma w (\Delta F)^2$ decreased from 736 to 304. In Table 4 the observed and calculated structure factors are listed; the latter are based on the parameters computed in the fourth cycle, and a temperature parameter B = 3.66 Å². The ratio $\Sigma |F_o|/\Sigma|F_c|$ is 1.017. The averaged shifts of the fifth cycle would change

Table 2. Comparison of the different sets of coordinates

R.m.s.	differences

	Obs.	Calc.
Two-dimensional Fouriers and two- dimensional least squares	0·033 Å	0·034 Å
Two-dimensional Fouriers and three- dimensional least squares	0·023 Å	0·021 Å
Two-dimensional least squares and three-dimensional least squares	0·027 Å	0·029 Å

B to 3.83 Å², indicating an average r.m.s. displacement of the atoms of the order of 0.2 Å. The final atomic coordinates and their standard deviations are given in Table 1. The latter were obtained from the residual $\Sigma w (\Delta F)^2$ and the diagonal coefficients of the normal equations.

5. Accuracy of the atomic coordinates

Table 2 gives the r.m.s. differences between the coordinates derived from the two independent twodimensional structure determinations and those obtained from the three-dimensional least-squares refine-

$P_1 - P_2$	2·240 Å	$\mathbf{P_{1}^{\prime}}\!\!-\!\!\mathbf{P_{2}^{\prime}}$	2·232 Å	$P_1 - P_2 - P_3 > 60.1^{\circ}$	$P_{1}^{\prime}-P_{2}^{\prime}-P_{3}^{\prime}$	50.0°
$\left. \begin{array}{c} \mathbf{P_{2}-P_{3}}\\ \mathbf{P_{3}-P_{1}} \end{array} \right\}$	2.246	$\left. \begin{array}{c} P_{2}^{\prime} - P_{3}^{\prime} \\ P_{3}^{\prime} - P_{1}^{\prime} \end{array} \right\}$	2.223	$P_3 - P_1 - P_2 \int 59.8$	$P'_{3}-P'_{1}-P'_{2} \int P'_{3}-P'_{3}-P'_{3}$	60.3
$\left.\begin{array}{c} \mathbf{P_1} - \mathbf{S_1} \\ \mathbf{P_2} - \mathbf{S_2} \end{array}\right\}$	2.089	$\left.\begin{array}{c}\mathbf{P_{1}^{\prime}-S_{1}^{\prime}}\\\mathbf{P_{2}^{\prime}-S_{2}^{\prime}}\end{array}\right\}$	2.095	$ \begin{array}{c} P_{1} - S_{1} - P_{4} \\ P_{2} - S_{2} - P_{4} \end{array} \right\} 103.3 $	$ \left. \begin{array}{c} P_{1}^{\prime} - S_{1}^{\prime} - P_{4}^{\prime} \\ P_{2}^{\prime} - S_{2}^{\prime} - P_{4}^{\prime} \end{array} \right\} $	102·7
$P_3 - S_3$	2.097	$P'_3-S'_3$	2.092	P ₃ -S ₃ -P ₄ 103.0	P'3-S'3-P'4	102.7
$\left.\begin{smallmatrix}\mathbf{P_4-S_1}\\\mathbf{P_4-S_2}\end{smallmatrix}\right\}$	2.096	$\left. \begin{smallmatrix} \mathbf{P_4'-S_1'} \\ \mathbf{P_4'-S_2'} \end{smallmatrix} ight\}$	2.087	$\left. \begin{array}{c} S_1 - P_1 - P_2 \\ S_2 - P_2 - P_1 \end{array} \right\} \ 103.0$	$\left. \begin{array}{c} \mathrm{S}_{1}^{\prime}-\mathrm{P}_{1}^{\prime}-\mathrm{P}_{2}^{\prime} \\ \mathrm{S}_{2}^{\prime}-\mathrm{P}_{2}^{\prime}-\mathrm{P}_{1}^{\prime} \end{array} \right\}$	103-2
P_4-S_3	2.091	$P_4'-S_3'$	2.070	$\left. \begin{array}{c} S_1 - P_1 - P_3 \\ S_2 - P_2 - P_3 \end{array} \right\} 103 \cdot 0$	$\left. \begin{array}{c} S_{1}^{\prime}-P_{1}^{\prime}-P_{3}^{\prime} \\ S_{2}^{\prime}-P_{2}^{\prime}-P_{3}^{\prime} \end{array} \right\}$	103-1
				$\left. \begin{array}{c} S_{3} - P_{3} - P_{2} \\ S_{3} - P_{3} - P_{1} \end{array} \right\} 103 \cdot 2$	$\left. \begin{array}{c} S_{3}^{\prime} - P_{3}^{\prime} - P_{2}^{\prime} \\ S_{3}^{\prime} - P_{3}^{\prime} - P_{1}^{\prime} \end{array} \right\}$	103-3
				$S_1 - P_4 - S_2$ 98.8	$S_1'-P_4'-S_2'$	99.5
				$\left. \begin{array}{c} {\rm S_2-P_4-S_3} \\ {\rm S_3-P_4-S_1} \end{array} \right\} \hspace{0.5cm} 99{\cdot}6$	$\left. \begin{array}{c} {\rm S}_{2}^{\prime} \!\!-\! {\rm P}_{4}^{\prime} \!\!-\! {\rm S}_{3}^{\prime} \\ {\rm S}_{3}^{\prime} \!\!-\! {\rm P}_{4}^{\prime} \!-\! {\rm S}_{1}^{\prime} \end{array} ight\}$	99.7

Fig. 5. Projections of the structure along (a) [100], (b) [010] and (c) [001]. Small circles: P; large circles: S.

7

}

Table 4. Observed and computed structure factors

This table contains 12 sub-tables, each for a different h and each containing three sets of four columns. In these four columns are listed, in order: k, l, 2.5 F_o , 2.5 F_c .

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h = 1	03 12 010 026 03 12 010 026 03 15 059 -050 03 10 046 -018 04 00 100 018 04 02 117 -167 04 02 117 -167 04 03 187 -179 04 05 054 065 04 06 121 145 04 06 020 -031 04 06 060 -021 04 06 060 -021 04 06 060 -021 05 05 0100 -020 05 01 010 020 05 02 031 -224 05 03 010 -223 05 04 010 020 05 04 044 -027	<u>h = 0</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
03 15 072 -075 04 00 055 -049 04 01 101 103 04 02 055 -049 04 02 053 -055 04 03 072 -079 04 04 0499 085 04 05 152 -172 04 06 018 -004 04 01 0155 -074 04 010 055 -074 04 101 0157 -071 04 10 053 -074 04 10 053 -074 05 101 -017 04 13 04 10 053 -074 050 04 10 053 -074 050 04 10 055 -074 050 05 10 010 -011 <td< td=""><td>h = 3</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td><u>h = 2</u></td></td<>	h = 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>h = 2</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Table 4 (cont.)

X

1

	-002 -001 0299 -0253 -025 001 001 001 0004 -006 0001 -006 000 000 -001 0000 -001 0000 -001 001 00	-015 -026 -063 -077 -040 -077 -070 -073 -075 -012 -075 -012 -073 -073 -073 -073 -073 -073 -073 -073
	03 000 04 000 05 044 06 039 07 062 08 020 10 010 11 010 10 033 044 03 046 030 11 010 033 04 05 000 10 037 046 03 046 016 04 05 012 01 010 013 01 010 013 01 010 013 01 010 012 01 010 013 02 04 030 03 04 030 04 030 027 05 046 032 05 046 032 05 05 032 05 046 032 05	
	064 -013 -050 -052 -052 -052 -068 -020 -052 -052 -052 -052 -052 -052 -052	$\begin{array}{c} -041\\ 038\\ 013\\ 0029\\ -144\\ 036\\ 092\\ -113\\ 036\\ 092\\ 125\\ 003\\ -113\\ 049\\ 125\\ 049\\ 125\\ 003\\ -113\\ 004\\ 003\\ 011\\ -0217\\ -011\\ -0217\\ -011\\ -027\\ 0011\\ -023\\ -024\\ 000\\ 015\\ 024\\ 000\\ 015\\ 024\\ 000\\ 015\\ 004\\ 000\\ 015\\ 004\\ 000\\ -021\\ -004\\ 006\\ -004\\ 006\\ -004\\ 006\\ -004\\ 006\\ -004\\ 006\\ -004\\ 0012\\ 012\\ 012\\ 012\\ 012\\ 012\\ 012\\ 01$
<u>h = 6</u>	03 11 076 03 12 013 03 13 055 04 00 069 04 01 153 04 02 020 04 03 027 04 03 027 04 03 027 04 06 037 04 05 023 04 07 055 04 07 055 04 08 010 04 10 053 04 01 053 04 01 039 05 02 208 05 04 10 039 05 02 208 05 04 08 05 01 039 05 03 05 05 03 05 05 07 023 05 01 608 05 01 039 05 03 05 05 03 05 05 07 023 05 01 608 05 01 028 05 01 608 05 11 020 05 12 027 05 13 016 05 10 023 05 04 04 06 08 04 06 08 05 01 028 05 11 020 05 12 027 05 13 016 05 01 028 05 02 028 05 00 00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	-545 -254 -2075 -169 008 008 008 008 008 008 008 008 008 00	006 032 018 017 020 020 020 014 025 010 025 010 012 010 010 012 010 012 010 012 010 012 012
	00 00 480 00 02 219 00 04 074 00 06 172 00 14 032 00 14 032 00 14 032 01 01 023 01 01 030 01 01 05 01 05 116 01 05 116 01 06 179 01 05 116 01 06 179 01 06 179 01 06 120 01 07 000 01 08 072 01 12 072 01 13 079 02 04 030 02 05 125 02 04 031 02 05 125 03 02 </td <td>00 01 014 00 03 026 00 07 010 00 07 010 00 07 010 00 01 043 01 01 033 01 03 035 01 03 035 01 05 010 01 05 010 01 05 010 01 05 010 01 05 010 01 07 038 01 07 038 01 07 038 01 07 038 01 13 040 01 14 043 02 03 031 02 03 031 02 03 031 02 03 031 02 03 031 02 03<</td>	00 01 014 00 03 026 00 07 010 00 07 010 00 07 010 00 01 043 01 01 033 01 03 035 01 03 035 01 05 010 01 05 010 01 05 010 01 05 010 01 05 010 01 07 038 01 07 038 01 07 038 01 07 038 01 13 040 01 14 043 02 03 031 02 03 031 02 03 031 02 03 031 02 03 031 02 03<
	-046 -036 051 051 069 -023 -027 -028 -021 061 -057 -027 -028 -054 051 -055 -054 -054 -054 -055 -054 -054 -054	-086 -051 -051 -004 -011 -030 -030 -030 -024 -012 -024 -012 -024 -011 -024 -024 -010 -030 -030 -037 -037 -037 -037 -037 -03
	07 05 0.46 07 05 0.39 07 06 0.52 07 07 0.10 07 10 0.10 07 12 0.00 07 12 0.00 08 0.2 0.10 08 0.4 0.01 08 0.4 0.00 08 0.4 0.00 08 0.4 0.00 08 0.4 0.00 08 0.4 0.00 08 0.4 0.00 09 0.1 0.01 09 0.1 0.01 09 0.1 0.02 09 0.1 0.01 09 0.1 0.01 09 0.1 0.01 09 0.6 0.46 09 0.7 0.36 09 0.7 0.36 10 0.1 0.36	07 06 097 07 07 08 07 09 012 07 10 010 07 10 010 07 10 010 07 12 042 08 00 030 08 01 072 08 03 075 08 04 010 08 03 075 08 04 010 08 03 077 08 03 077 08 03 077 08 03 077 08 04 010 08 10 010 08 10 010 09 01 082 09 02 072 09 03 047 09 04 042 09 04 042 09 05 </td
	$\begin{array}{c} -010\\ 015\\ -016\\ 018\\ -016\\ -016\\ -203\\ 211\\ 184\\ 117\\ -203\\ -203\\ -203\\ -203\\ -0062\\ -0062\\ -0062\\ -0062\\ -0048\\ -158\\ -002\\ 028\\ -002\\ 028\\ -002\\ 028\\ -002\\ -0068\\ -021\\ -0068\\ -021\\ -0068\\ -001\\ -030\\ -000\\$	$\begin{array}{c} -013\\ 007\\ 051\\ -131\\ -027\\ -000\\ -001\\ -101\\ -027\\ -029\\ -001\\ -101\\ -027\\ -029\\ -029\\ -029\\ -029\\ -029\\ -032\\ -035\\ -012\\ -072\\ -$
<u>b - 4</u>	13 010 13 14 010 13 15 010 14 010 057 15 010 057 14 010 057 14 01 173 14 01 173 14 01 173 14 03 180 14 05 266 14 05 266 14 05 266 14 05 060 15 070 070 14 10 070 15 02 080 15 01 122 15 02 080 15 04 122 15 05 05 15 04 030 15 10 035 15 04 030 15 13 030 15 14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	-006 235 -020 -021 -022 -022 -025 -022 -022 -022 -022 -022	024 -225 -225 -095 -005 -006 -106 -108 -108 -108 -108 -128 -005 -128 -005 -128 -005 -128 -025 -025 -025 -025 -025 -025 -025 -025
	00 030 002 232 004 120 014 120 016 109 018 057 10 086 12 049 12 049 12 049 13 120 14 044 017 003 05 003 06 049 010 031 021 161 031 036 021 161 032 161 031 036 031 031 035 185 056 216 010 010 051 185 057 185 050 122 12 010 12 010 12 010 13 036 14 057 15 057<	D1 022 D3 238 D3 238 D3 238 D3 238 D1 105 13 022 13 022 13 032 14 060 15 011 04 067 10 148 11 055 15 012 16 020 000 1400 15 010 16 020 001 145 004 145 005 040 037 14 038 047 05 040 133 027 011 138 12 027 13 027
	00 -00 000 -00 000 -00 000 -00 000 -00 000 -00 001 -00 001 -00 001 -00 011 -00 011 -00 011 -00 011 -00 011 -00 011 -00 011 -00 011 -00 011 -00 011 -00 011 -00 011 -00 011 -00 011 -00 011 -00 012 -00 012 -00 012 -00 012 -00 012 -00 012 -00 013 -00 014 -00 015 -00 016	00 0 000 0 000 0 000 0 000 0 000 0 000 0 001 0 01 0 01 0 01 0 01 0 01 0 01 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 02 0 03 0

ment. In column 2 are listed the actually observed r.m.s. differences between these coordinates; column 3 gives the r.m.s. differences as expected from the standard deviations estimated for the individual sets of coordinates. For the two-dimensional Fourier refinement and the least-squares refinement the latter have been cited in § 3; they amount to 0.02 and 0.028 Å respectively. For the three-dimensional least-squares

Table 4 (cont.)

h	8
_	_

00	00	348	322	03	Ó6	000	-004	06	06	017	014	
00	0.2	099	-090	03	07	038	-042	06	07	071	-069	
00	0.	127	115	03	0.8	094	-097	06	08	000	-008	
00	06	056	062	03	09	017	-020	06	ñě	000	-002	
00	0.8	086	053	03	10	046	047	06	10	063	053	
00	10	069	-085	04		109	176	06		023	-026	
00	12	099	087	04	01	081	040	07	âî	051	060	
01		010	-006	04		017	0.21	07		010	-010	
ŏ1	0.2	0020	-000	04	22	0.11	-022	07	02	010	-017	
	~	0.72	0.71		0,	0.20	-022		0,3	033	-022	
		107	-084			020	-070	07		010	-019	
		107	-084			001	-079	01	0.5	010	-010	
01	0.5	040	030	04	00	086	087	07	06	000	-001	
01	00	010	013	04	07	092	-094	07	07	035	039	
01	07	0/6	-061	04	08	028	-008	07	08	020	-020	
01	08	048	043	04	09	025	021	07	09	023	-008	
01	09	043	-037	04	10	028	-007	07	10	017	018	
01	10	025	~034	04	11	058	-051	08	00	025	-038	
01	11	000	-002	04	12	030	029	08	01	035	033	
01	12	000	003	05	01	010	023	08	02	025	037	
01	13	038	-037	05	02	079	045	08	03	010	-021	
02	00	023	036	05	03	010	-022	08	04	051	-055	
02	01	071	063	05	04	048	-059	08	05	010	025	
02	02	033	032	05	05	000	-000	08	06	035	043	
02	03	030	038	05	06	010	-011	09	01	015	-021	
0 Z	04	166	159	05	07	010	-010	09	02	015	005	
02	05	030	004	05	08	000	-00Z	09	03	025	-035	
02	06	104	-090	05	09	000	-005	09	04	023	-022	
02	07	020	018	05	10	010	-015	09	05	030	-030	
02	08	092	099	05	11	023	-024	09	06	051	-031	
02	09	066	058	06	00	066	-060	10	00	010	-015	
03	01	384	-083	06	01	043	053	10	01	023	-024	
03	02	094	+086	06	02	094	211	10	02	015	021	
03	03	043	-044	06	03	048	-051	10	03	020	-035	
03	04	046	054	06	04	033	016	10	04	012	-017	
03	05	020	-045	06	05	020	-013					
	1	1 = 9				h =]	.0			h = 1	2	
00	05	207	-213	00	00	204	-143	00	00	088	102	

refinement the standard deviations of the individual coordinates are given in Table 1 and their r.m.s. value is 0.007 Å. They mainly result from inaccuracies in the observed intensities.

I

It is seen that the expected and observed values are in agreement.

The standard deviation in the final coordinates, which is 0.007 Å, corresponds to a standard deviation of $\sqrt{2} \times 0.007 = 0.01$ Å in the bond lengths. The effect of the inaccuracies in the lattice constants, amounting to approximately 0.001 Å, is negligible. The standard deviation in the bond angles is 0.5° (Cruickshank & Robertson, 1953).

6. Discussion

The structure consists of molecules of P_4S_3 , with shortest intermolecular distances of approximately 3.6 Å. The arrangement of the molecules in the crystal is shown in Fig. 5. Their packing resembles that of hexagonal closest packing. The distinction between phosphorus and sulfur atoms has been based on chemical arguments exclusively.

One of the mirror planes of a molecule coincides with a mirror plane of the crystal and the 6 atoms S_3 , S_3' , P_3 , P_3' , P_4 , and P_4' (numbered as indicated in the footnote of Table 1) and 18 symmetry-related atoms lie in the special fourfold sets of positions (c) of the space group *Pmnb* (International Tables, 1952). The remaining 4 atoms of the asymmetric unit and the 28 symmetry-related atoms take up positions of the general eightfold set (d). There are thus 24 positional parameters and the asymmetric unit consists of halves of two different molecules. The intramolecular atomic distances and bond angles are listed in Table 3. Two types of bonds can be distinguished in the molecule, P-P with an average value of 2.235 Å and P-S with an average value of 2.090 Å. When the individual values are considered to be equivalent, a standard deviation of about 0.005 Å is calculated for the mean values. The four types of bond angles in the molecule and their average values are as follows:

S-P-S (99·4°), P-S-P (103·0°), S-P-P (103·1°),
P-P-P (
$$60\cdot0^{\circ}$$
).

The bond lengths 2.235 Å (weight in radial distribution function 3/2.235 = 1.34) and 2.090 Å (weight 6/2.090 = 2.87), average 2.14 Å, agree with the reported electron-diffraction value 2.15 Å (Hassel & Pettersen, 1941). The non-bonded distances are in fair agreement with the single peak of the radial distribution function at 3.38 Å. They fall into three groups of different weights: 3.19 Å (0.94), 3.27 Å (0.92), 3.39 Å (1.77).

The values for the bond lengths may be compared with those observed in P_4S_7 and P_4S_{10} (Vos & Wiebenga, 1955, 1956), which are 2.35 Å and 2.08 Å for P-P and P-S respectively; with those in P_4S_5 (Van Houten & Wiebenga, 1957), which are 2.21 Å for P-P and 2.08-2.19 Å for P-S; and with the P-P distance of 2.21 Å in P_2I_4 (Leung & Waser, 1956). As is seen, these distances are essentially equivalent, with the exception of the remarkably long P-P distance in P_4S_7 .

The liberal help of Dr John S. Rollett in the leastsquares refinement using the zonal data, and the assistance of Mr H. Schürer during the Fourier refinements, are gratefully acknowledged. The Patterson and Fourier syntheses were computed on IBM machines, which were generously put at our disposal by Theodorus Niemeyer N. V., Groningen. We also are grateful to the Robert A. Welch Foundation of Houston, Texas, for its financial assistance, making possible the use of a high-speed electronic computer for the leastsquares refinements.

References

- Воотн, А. D. (1946). Ргос. Roy. Soc. A, 188, 74.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- CRUICKSHANK, D. W. J. & ROBERTSON, A. P. (1953). Acta Cryst. 6, 698.
- GRISON, E. (1951). Acta Cryst. 4, 489.
- HARKER, D. (1948). Amer. Min. 33, 764.
- HARKER, D. & KASPER, J. S. (1948). Acta Cryst. 1, 70.
- HASSEL, O. & PETTERSEN, A. (1941). Tids. Kjemi Bergv. Met. 1, 57.
- HOUTEN, S. VAN, VOS, A. & WIEGERS, G.A. (1955). Rec. Trav. Chim. Pays-Bas, 74, 1167.
- HOUTEN, S. VAN & WIEBENGA, E. H. (1957). Acta Cryst. 10, 156.
- Howells, E. R., Phillips, D. C. & Rogers, D. (1950). Acta Cryst. 3, 210.

- HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
- International Tables for X-ray Crystallography (1952), p. 151. Birmingham: Kynoch Press.
- LAVINE, L. R. & ROLLETT, J. S. (1956). Acta Cryst. 9, 269.
- LEUNG, Y. C., WASER, J. & ROBERTS, L. R. (1955). Chem. Ind. p. 948.
- LEUNG, Y. C. & WASER, J. (1956). J. Phys. Chem. 60, 539.
- MACGILLAVRY, C. H. (1950). Acta Cryst. 3, 214.
- PERNERT, J. C. & BROWN, J. H. (1949). Chem. Engng. News, 27, 2143.

- STOCK, A. (1910a). Ber. dtsch. chem. Ges. 43, 150.
- STOCK, A. (1910b). Ber. dtsch. chem. Ges. 43, 414.
- STOCK, A. (1910c). Ber. dtsch. chem. Ges. 43, 1223.
- STOCK, A. & THIEL, K. (1905). Ber. dtsch. chem. Ges. 38, 2719.
- TREADWELL, W. D. & BEELI, CH. (1935). Helv. chim. Acta, 18, 1161.
- Vos, A. & WIEBENGA, E. H. (1955). Acta Cryst. 8, 217.
- Vos, A. & WIEBENGA, E. H. (1956). Acta Cryst. 9, 92.
 WIEBENGA, E. H. & SMITS, D. W. (1950). Acta Cryst. 3, 265.
- WILSON, A. J. C. (1942). Nature, Lond. 150, 152.

Acta Cryst. (1957). 10, 582

The Choice of the Standard Unit Cell in a Triclinic Lattice

BY V. BALASHOV AND H. D. URSELL

The University, Leeds 2, England

(Received 22 August 1956 and in revised form 13 May 1957)

An algorism for the reduction of the experimental data directly to the three shortest non-coplanar translations (Dirichlet triplet) is given. A method is also given for deriving the Dirichlet triplet from the Delaunay reduced cell, and analysis of the latter concept shows that the Delaunay cell can have interaxial angles arbitrarily near to 180°. For the Dirichlet triplet, in contrast, the interaxial angles can never deviate by more than 30° from right angles.

1. Introduction

In crystallography the choice of a unit cell in a lattice is, by convention, governed by the properties of symmetry. This applies to all crystallographic systems except the triclinic, where symmetry gives us no guidance.

Delaunay (1933) has given a profound and illuminating discussion of the geometry of crystal lattices, basing his work on the work of Selling (1874) and Voronoi (1908) on the reduction of positive definite quadratic forms. Delaunay makes great use of the 'Voronoi domains' (for definition see below, following equation (1.6)).

The lack of uniformity in the presentation of the lattice parameters of triclinic substances was realised long ago, and a number of suggestions were brought forward for a unique choice of the unit cell (Balashov, 1956; Barth & Tunell, 1933; Buerger, 1937, 1942, chap. 19, 1956, pp. 107-8); Crowfoot, 1935; Donnay & Melon, 1933; Donnay, Tunell & Barth, 1934; Donnay, 1943a, b, 1952; Peacock, 1937; Tunell, 1933). A particular cell, called the 'Delaunay reduced cell', brought to the attention of crystallographers by Ito (1950, p. 189), was later described in *International Tables* (1952, p. 530) and used by Donnay & Nowacki (1954) as a standard reference cell.

This cell is obtained from an arbitrary primitive cell by a simple and elegant algorism given by Delaunay (1933) and applied to the parameters of Selling. These refer to a quartet

$$a, b, c, d$$
 (1.1)

1

of lattice translations, satisfying

$$\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d} = \mathbf{0} , \qquad (1 \cdot 2)$$

and such that any three of them form a primitive triplet. The Selling parameters are the six scalar products

$$a.b, a.c, a.d, b.c, b.d, c.d$$
, (1.3)

which are sufficient to determine the lengths of $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ and the angles between them: for

$$a^2 = a \cdot a = -a \cdot b - a \cdot c - a \cdot d$$
, (1.4)

$$ab\cos\gamma = \mathbf{a} \cdot \mathbf{b}$$
. (1.5)

Selling's reduction theory shows that there is a particular quartet $(1\cdot1)$ of lattice vectors satisfying $(1\cdot2)$ and such that all the numbers $(1\cdot3)$ are negative or zero. In general the reduced quartet is unique (save for a possible *simultaneous* change of sign of all four) and gives Selling parameters all negative.

The so-called Delaunay reduced cell is formed from the reduced quartet $(\mathbf{a}_r, \mathbf{b}_r, \mathbf{c}_r, \mathbf{d}_r)$ by discarding one of them, say \mathbf{d}_r , and taking the other three as concurrent edges of a parallelepiped. Whichever one of